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Negative aftereffect model 
 
 To evaluate whether the serial dependence we report could arise simply 
as a result of classic negative aftereffects, we ran a simulation that estimated the 
strength of serial dependence we would expect to find in the presence of 
negative aftereffects alone. Using the counterbalanced trial sequences presented 
to subjects in Experiment 1, we estimated the perceived orientation on each trial 
based on the presented orientation and negative aftereffects from the 
orientations seen on previous trials. The modeled negative aftereffects peaked in 
strength for previous orientations that were 10 rotational degrees away from the 
present stimulus and fell off in strength for smaller or larger separations51. We 
allowed the overall strength of the aftereffects to vary as a free parameter in the 
simulation, ranging from zero (no aftereffect) to 100%, meaning that a previous 
stimulus rotated 10° from the present stimulus could repel the perceived 
orientation of the present stimulus by 10° (100% of the orientation difference). 
The falloff of the influence of negative aftereffects over time was a second free 
parameter in the model: aftereffects fell off in a Gaussian fashion with the 
standard deviation of the Gaussian ranging from zero (instantaneous falloff, 
hence no negative aftereffects) to one minute (trials seen several minutes ago 
still had some influence on the perception of the present trial). For a given pair of 
aftereffect strength and temporal falloff parameters, we computed the perception 
of the present stimulus as the orientation of the present stimulus (correct 
response) plus the Gaussian-weighted sum of negative aftereffects from all 
previous trials. After estimating the perceived orientation for each trial, we 
constructed a serial dependence plot (see Supplementary Fig. 1) and fit a DoG 
(first derivative of a Gaussian) curve to the data to measure the strength of serial 
dependence. We recorded the predicted serial dependence at each point in the 
parameter space to determine whether any combination of parameters could 
lead to results that resemble the serial dependence we found in subjects’ 
responses. The results are shown in Supplementary Figure 8, and demonstrate 
that serial dependence does not emerge as a product of a negative aftereffect of 
any strength or duration. 
 
 
Labeled-line models 
  
 How might serial dependence in orientation perception arise? We 
considered two possibilities: cells tuned to the orientations of recently-viewed 
stimuli might have increased sensitivity for a period of time following the stimulus 
presentation (a possible result of lingering feature-selective attention), or 
orientation tuning of single units might shift away from previously viewed stimuli. 
For each case we constructed a labeled-line model to examine whether such a 



phenomenon would result in serial dependence in the decoded orientation from a 
population of modeled cells. Each model consisted of 180 orientation-tuned 
Gaussian channels with a standard deviation of 28.2 degrees52, tiled over 
orientation space in increments of one degree. Each channel always signaled the 
orientation for which it was optimally tuned prior to any stimulus presentation 
(hence a “labeled line” model). That is, in the “shift” model, the range of 
orientations to which a channel was responsive could shift, but the orientation 
signaled by a response from that channel remained constant. Perceived 
orientation was computed as the centroid of the population response: a Gaussian 
curve was fit to the responses of all channels (allowing for a skewed distribution 
by estimating sigma for the rightward and leftward tails separately), and the 

centroid of the distribution was computed as − !
𝜋
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 In the “gain” model (Supplementary Fig. 9a), channels tuned to the 
orientation of a recently seen stimulus became more sensitive, i.e. they 
responded more strongly to subsequent stimuli that fell within their tuning range. 
The amount of gain applied across channels was governed by a Gaussian 
distribution centered on the orientation of the most recent stimulus, and the 
amplitude and standard deviation of the Gaussian distribution were free 
parameters in the model. A third free parameter was a relaxation parameter, 
which determined how quickly the gain in channels relaxed back to zero after 
stimulation. 
 In the “shift” model (Supplementary Fig. 9b), the orientation tuning of the 
channels was shifted away from a recently seen orientation. The distribution of 
shifts over channels was determined by the first derivative of a Gaussian (DoG) 
centered at the stimulated location, such that the shift at the stimulated location 
was zero and neighboring channels were repelled away with an amplitude that 
peaked at the maxima of the DoG function and fell to zero beyond that. The width 
and amplitude of the DoG function were free parameters in the model; subjects 
were allowed to have different maximal shifts at different distances from the 
stimulated orientation. As in the “gain” model, a third relaxation parameter 
determined how quickly the shifted channel tuning relaxed back to its default 
state after stimulation. 
 Predicted responses for a given set of parameters were generated by 
using the trial sequences presented to subjects in the fully randomized version of 
Experiment 1. For each trial, the model generated a prediction for the perceived 
orientation of the stimulus based on the present and prior stimuli in the trial 
sequence. We split the data from the randomized version of Experiment 1 into 
two halves for each subject and conducted model fitting on the first half of the 
data and model testing on the second half. Model fitting was conducted with 
least-squares fitting, finding the parameters that minimized the summed squared 
difference between the model’s predicted responses and subjects’ actual 
responses. Within the second half of the data, model performance was evaluated 
based on the correlation between the model’s errors and subjects’ errors. Testing 
performance based on errors rather than raw responses required the model to 



make the same pattern of errors that subjects made (rather than simply reporting 
the true stimulus orientations) in order to perform above chance. 
 Supplementary Figure 9c shows model performance for the gain model 
(blue data) and the shift model (red data). Chance performance was determined 
by permuting the trial correspondence between model errors and subjects’ errors 
5,000 times and recording the correlation on each iteration; p values were taken 
as the proportion of the permuted null distribution that was larger than the true 
correlation between model errors and subjects’ errors. While the gain model 
tended to perform somewhat better than the shift model, both models performed 
significantly above chance for all subjects. Both models also have a plausible 
basis in known neural phenomena. If feature-selective attention remains tuned to 
the channels that responded to recent stimuli30, it could increase sensitivity within 
those channels as posited in the gain model. There is also evidence that 
orientation tuning of single cells can shift in the manner specified in the shift 
model4, although such shifts resulted from longer adapting stimuli and may or 
may not arise for the short stimulus presentation in our paradigm. Further tests 
will be needed to distinguish among these and other models (e.g., a Bayesian 
estimation framework31) that could accommodate our findings, but our labeled-
line models demonstrate that serial dependence in orientation perception can 
arise from simple tweaks to neural tuning based on recent visual input. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


